Astropedia
Etiqueta: Edición visual
Sin resumen de edición
Etiqueta: Edición visual
 
(No se muestran 4 ediciones intermedias de 4 usuarios)
Línea 1: Línea 1:
  +
[[File:PrincB.png|thumb|284x284px]]
{{otros usos|Teorema de Bernoulli|el teorema matemático enunciado por Jakob Bernoulli}}
 
 
El '''principio de Bernoulli''', también denominado '''ecuación de Bernoulli o Trinomio de Bernoulli''', describe el comportamiento de un [[fluido]] moviéndose a lo largo de una [[línea de corriente]]. Fue expuesto por [[Daniel Bernoulli]] en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin [[viscosidad]] ni [[rozamiento]]) en régimen de circulación por un conducto cerrado, la [[energía]] que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes:
[[Imagen:BernoullisLawDerivationDiagram.png|thumb|right|250px|Esquema del Principio de Bernoulli.]]
 
El '''principio de Bernoulli''', también denominado '''ecuación de Bernoulli o Trinomio de Bernoulli''', describe el comportamiento de un [[fluido]] moviéndose a lo largo de una [[línea de corriente]]. Fue expuesto por [[Daniel Bernoulli]] en su obra Hidrodinámica ([[1738]]) y expresa que en un fluido ideal (sin [[viscosidad]] ni [[rozamiento]]) en régimen de circulación por un conducto cerrado, la [[energía]] que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes:
 
   
1.- Cinético: esta es mi verga la energía debida a la velocidad que posea el fluido.<br />
+
1.- Cinético: esta es la energía debida a la velocidad que posea el fluido.<br />2.- Potencial gravitacional: es la energía debido a la altitud que un fluido posea.<br />3.- Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.
2.- Potencial gravitacional: es la energía debido a la altitud que un fluido posea.<br />
 
3.- Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.
 
   
 
La siguiente ecuación conocida como "Ecuación de Bernoulli" (Trinomio de Bernoulli) consta de estos mismos términos.
 
La siguiente ecuación conocida como "Ecuación de Bernoulli" (Trinomio de Bernoulli) consta de estos mismos términos.
Línea 31: Línea 28:
   
 
== Características y consecuencias ==
 
== Características y consecuencias ==
Cada uno de los términos de la esta ecuación tienen unidades de [[longitud]], y a la vez representan formas distintas de energía; en [[hidráulica]] es común expresar la energía en términos de longitud, y se habla de '''altura''' o '''cabezal''', esta última traducción del inglés '''head'''. Así en la ecuación de bernoulli los términos suelen llamarse alturas o cabezales de velocidad, de presión y cabezal hidráulico, del inglés '''hydraulic head'''; el término <math>z</math> se suele agrupar con <math>P/\gamma</math> para dar lugar a la llamada '''altura piezométrica''' o también '''carga piezométrica.
+
Cada uno de los términos de la esta ecuación tienen unidades de [[longitud]], y a la vez representan formas distintas de energía; en [[hidráulica]] es común expresar la energía en términos de longitud, y se habla de '''altura''' o '''cabezal''', esta última traducción del inglés '''head'''. Así en la ecuación de bernoulli los términos suelen llamarse alturas o cabezales de velocidad, de presión y cabezal hidráulico, del inglés '''hydraulic head'''; el término <math>z</math> se suele agrupar con <math>P/\gamma</math> para dar lugar a la llamada '''altura piezométrica''' o también '''carga piezométrica.'''
   
 
: <math> \overbrace{{V^2 \over 2 g}}^{\mbox{cabezal de velocidad}}+\overbrace{\underbrace{\frac{P}{\gamma}}_{\mbox{cabezal de presion}} + z}^{\mbox{altura o carga piezometrica}} = \overbrace{H}^{\mbox{Cabezal o Altura hidraulica}}</math>
 
: <math> \overbrace{{V^2 \over 2 g}}^{\mbox{cabezal de velocidad}}+\overbrace{\underbrace{\frac{P}{\gamma}}_{\mbox{cabezal de presion}} + z}^{\mbox{altura o carga piezometrica}} = \overbrace{H}^{\mbox{Cabezal o Altura hidraulica}}</math>
  +
[[File:PrincB2.PNG|thumb|226x226px]]
 
 
También podemos reescribir la este principio en forma de suma de presiones multiplicando toda la ecuación por <math>\gamma</math>, de esta forma el término relativo a la velocidad se llamará '''presión dinámica''', los términos de presión y altura se agrupan en la '''presión estática'''.
 
También podemos reescribir la este principio en forma de suma de presiones multiplicando toda la ecuación por <math>\gamma</math>, de esta forma el término relativo a la velocidad se llamará '''presión dinámica''', los términos de presión y altura se agrupan en la '''presión estática'''.
[[Imagen:Venturifixed2.PNG|thumb|450px|Esquema del efecto Venturi.]]
 
 
 
: <math> \underbrace{\frac{\rho V^2}{2}}_{\mbox{presion dinamica}}+\overbrace{P+ \gamma z}^{\mbox{presion estatica}}=constante </math>
 
: <math> \underbrace{\frac{\rho V^2}{2}}_{\mbox{presion dinamica}}+\overbrace{P+ \gamma z}^{\mbox{presion estatica}}=constante </math>
   
Línea 56: Línea 51:
   
 
== Ecuación de Bernoulli y la Primera Ley de la Termodinámica ==
 
== Ecuación de Bernoulli y la Primera Ley de la Termodinámica ==
De la [[primera ley de la termodinámica]] se puede concluir una ecuación estéticamente parecida a la ecuación de bernouilli anteriormente señalada, pero conceptualmente distinta. La diferencia fundamental yace en los límites de funcionamiento y en la formulación de cada fórmula. La ecuación de bernoulli es un balance de fuerzas sobre una partícula de fluido que se mueve a través de una linea de corriente, mientras que la primera ley de la termodinámica consiste en un balance de [[energía]] entre los límites de un ''volumen de control'' dado, por lo cual es más general ya que permite expresar los intercambios energéticos a lo largo de una corriente de fluido, como lo son las pérdidas por fricción que restan energía, y las bombas o ventiladores que suman energía al fluido. La forma general de esta, llamémosla, "forma energética de la ecuación de bernoulli" es:
+
De la [[primera ley de la termodinámica]] se puede concluir una ecuación estéticamente parecida a la ecuación de Bernoulli anteriormente señalada, pero conceptualmente distinta. La diferencia fundamental yace en los límites de funcionamiento y en la formulación de cada fórmula. La ecuación de Bernoulli es un balance de fuerzas sobre una partícula de fluido que se mueve a través de una linea de corriente, mientras que la primera ley de la termodinámica consiste en un balance de [[energía]] entre los límites de un ''volumen de control'' dado, por lo cual es más general ya que permite expresar los intercambios energéticos a lo largo de una corriente de fluido, como lo son las pérdidas por fricción que restan energía, y las bombas o ventiladores que suman energía al fluido. La forma general de esta, llamémosla, "forma energética de la ecuación de Bernoulli" es: la paja
   
 
<math>
 
<math>
Línea 96: Línea 91:
 
<math>
 
<math>
 
\frac{w}{g} + \frac{q}{g} = \frac{P_2}{\gamma} - \frac{P_1}{\gamma} + \frac{{V_2}^2}{2 g} - \frac{{V_1}^2}{2 g} + z_1 - z_2
 
\frac{w}{g} + \frac{q}{g} = \frac{P_2}{\gamma} - \frac{P_1}{\gamma} + \frac{{V_2}^2}{2 g} - \frac{{V_1}^2}{2 g} + z_1 - z_2
</math>
+
</math>rthtuiy5iohtirhuirtuir
   
 
Los términos del lado izquierdo de la igualdad son relativos a los flujos de energía a través del volumen de control considerado, es decir, son las entradas y salidas de energía del fluido de trabajo en formas de [[trabajo (física)|trabajo]] (<math>w</math>) y [[calor]] (<math>q</math>). El término relativo al trabajo <math>w/g</math> consideraremos que entra al sistema, lo llamaremos <math>h</math> y tiene unidades de [[longitud]], al igual que <math>q/g</math>, que llamaremos <math>h_f</math> quién sale del sistema, ya que consideraremos que sólo se intercambia calor por vía de la fricción entre el fluido de trabajo y las paredes del conducto que lo contiene. Así la ecuación nos queda:
 
Los términos del lado izquierdo de la igualdad son relativos a los flujos de energía a través del volumen de control considerado, es decir, son las entradas y salidas de energía del fluido de trabajo en formas de [[trabajo (física)|trabajo]] (<math>w</math>) y [[calor]] (<math>q</math>). El término relativo al trabajo <math>w/g</math> consideraremos que entra al sistema, lo llamaremos <math>h</math> y tiene unidades de [[longitud]], al igual que <math>q/g</math>, que llamaremos <math>h_f</math> quién sale del sistema, ya que consideraremos que sólo se intercambia calor por vía de la fricción entre el fluido de trabajo y las paredes del conducto que lo contiene. Así la ecuación nos queda:
Línea 114: Línea 109:
 
== Aplicaciones Principio de Bernoulli ==
 
== Aplicaciones Principio de Bernoulli ==
   
 
'''Chimenea'''<br />Las Chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayor es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.
'''Chimenea'''<br />
 
Las Chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayor es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.
 
   
 
'''Tubería'''<br />La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.
'''Tubería'''<br />
 
La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.
 
   
 
'''Sustentación de aviones'''<br />El efecto Bernoulli es también en parte el origen de la sustentación de los aviones. Gracias a la forma y orientación de los perfiles aerodinámicos, el ala es curva en su cara superior y esta angulada respecto a las líneas de corriente incidentes. Por ello, las líneas de corriente arriba del ala están mas juntas que abajo, por lo que la velocidad del aire es mayor y la presión es menor arriba del ala; al ser mayor la presión abajo del ala, se genera una fuerza neta hacia arriba llamada [[sustentación]].
'''Sustentación de aviones'''<br />
 
El efecto Bernoulli es también en parte el origen de la sustentación de los aviones. Gracias a la forma y orientación de los perfiles aerodinámicos, el ala es curva en su cara superior y esta angulada respecto a las líneas de corriente incidentes. Por ello, las líneas de corriente arriba del ala están mas juntas que abajo, por lo que la velocidad del aire es mayor y la presión es menor arriba del ala; al ser mayor la presión abajo del ala, se genera una fuerza neta hacia arriba llamada [[sustentación]].
 
   
 
'''Movimiento de una pelota o balón con efecto'''
 
'''Movimiento de una pelota o balón con efecto'''
 
Si lanzamos una pelota o un balón con efecto, es decir rotando sobre si mismo se desvía hacia un lado.
 
Si lanzamos una pelota o un balón con efecto, es decir rotando sobre si mismo se desvía hacia un lado.
   
 
'''Carburador de automóvil'''<br />En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.
[[Imagen:Bernoulli.gif]]
 
 
'''Carburador de automóvil'''<br />
 
En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.
 
   
 
== Véase también ==
 
== Véase también ==
Línea 137: Línea 126:
 
[[Categoría:Principios y leyes físicas|Bernoulli]]
 
[[Categoría:Principios y leyes físicas|Bernoulli]]
 
[[Categoría:Mecánica de fluidos]]
 
[[Categoría:Mecánica de fluidos]]
  +
[[Categoría:Aerodinámica]][[bg:Уравнение на Бернули]][[de:Strömung nach Bernoulli und Venturi]][[en:Bernoulli's principle]][[pl:Równanie Bernoulliego]][[pt:Princípio de Bernoulli]][[uk:Закон Бернуллі]]
[[Categoría:Aerodinámica]]
 
 
[[ar:مبدأ بيرنولي]]
 
[[bg:Уравнение на Бернули]]
 
[[cs:Bernoulliho rovnice]]
 
[[da:Bernoullis princip]]
 
[[de:Strömung nach Bernoulli und Venturi]]
 
[[en:Bernoulli's principle]]
 
[[fa:معادله برنولی]]
 
[[fi:Bernoullin laki]]
 
[[fr:Principe de Bernoulli]]
 
[[he:משוואת ברנולי]]
 
[[hr:Bernoullijeva jednadžba]]
 
[[hu:Bernoulli törvénye]]
 
[[id:Prinsip Bernoulli]]
 
[[it:Equazione di Bernoulli]]
 
[[ja:ベルヌーイの定理]]
 
[[ko:베르누이 방정식]]
 
[[ms:Persamaan Bernoulli]]
 
[[nn:Bernouilli-prinsippet]]
 
[[no:Bernoulli-prinsippet]]
 
[[pl:Równanie Bernoulliego]]
 
[[pt:Princípio de Bernoulli]]
 
[[ro:Legea lui Bernoulli]]
 
[[ru:Закон Бернулли]]
 
[[sl:Bernoullijeva enačba]]
 
[[sv:Bernoullis ekvation]]
 
[[uk:Закон Бернуллі]]
 
[[zh:伯努利定律]]
 

Revisión actual - 17:59 26 nov 2018

PrincB

El principio de Bernoulli, también denominado ecuación de Bernoulli o Trinomio de Bernoulli, describe el comportamiento de un fluido moviéndose a lo largo de una línea de corriente. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes:

1.- Cinético: esta es la energía debida a la velocidad que posea el fluido.
2.- Potencial gravitacional: es la energía debido a la altitud que un fluido posea.
3.- Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.

La siguiente ecuación conocida como "Ecuación de Bernoulli" (Trinomio de Bernoulli) consta de estos mismos términos.

donde:

  • = velocidad del fluido en la sección considerada.
  • = aceleración gravitatoria
  • = altura geométrica en la dirección de la gravedad
  • = presión a lo largo de la línea de corriente
  • = densidad del fluido

Para aplicar la ecuación se deben realizar los siguientes supuestos:

  • Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica

se encuentra en una zona 'no viscosa' del fluido.

  • Caudal constante
  • Fluido incompresible - ρ es constante
  • La ecuación se aplica a lo largo de una línea de corriente

Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler.

Un ejemplo de aplicación del principio lo encontramos en el Flujo de agua en tubería.

Características y consecuencias

Cada uno de los términos de la esta ecuación tienen unidades de longitud, y a la vez representan formas distintas de energía; en hidráulica es común expresar la energía en términos de longitud, y se habla de altura o cabezal, esta última traducción del inglés head. Así en la ecuación de bernoulli los términos suelen llamarse alturas o cabezales de velocidad, de presión y cabezal hidráulico, del inglés hydraulic head; el término se suele agrupar con para dar lugar a la llamada altura piezométrica o también carga piezométrica.

PrincB2

También podemos reescribir la este principio en forma de suma de presiones multiplicando toda la ecuación por , de esta forma el término relativo a la velocidad se llamará presión dinámica, los términos de presión y altura se agrupan en la presión estática.

o escrita de otra manera más sencilla:

donde

  • es una constante-

Igualmente podemos escribir la misma ecuación como la suma de la energía cinética, la energía de flujo y la energía potencial gravitatoria por unidad de masa:

Así el principio de bernoulli puede ser visto como otra forma de la ley de la conservación de la energía, es decir, en una linea de corriente cada tipo de energía puede subir o disminuir en virtud de la disminución o el aumento de las otras dos.

Esta ecuación permite explicar fenómenos como el efecto Venturi, ya que la aceleración de cualquier fluido en un camino equipotencial (con igual energía potencial) implicaría una disminución de la presión. Gracias a este efecto observamos que las cosas ligeras muchas veces tienden a salirse de un carro en movimiento cuando se abren las ventanas, ya que la presión del aire es menor fuera del auto ya que está en movimiento respecto a aquél que se encuentra dentro del auto, donde la presión es necesariamente mayor; pero en forma aparentemente contradictoria el aire entra al carro, pero ésto ocurre por fenómenos de turbulencia y capa límite.

Ecuación de Bernoulli y la Primera Ley de la Termodinámica

De la primera ley de la termodinámica se puede concluir una ecuación estéticamente parecida a la ecuación de Bernoulli anteriormente señalada, pero conceptualmente distinta. La diferencia fundamental yace en los límites de funcionamiento y en la formulación de cada fórmula. La ecuación de Bernoulli es un balance de fuerzas sobre una partícula de fluido que se mueve a través de una linea de corriente, mientras que la primera ley de la termodinámica consiste en un balance de energía entre los límites de un volumen de control dado, por lo cual es más general ya que permite expresar los intercambios energéticos a lo largo de una corriente de fluido, como lo son las pérdidas por fricción que restan energía, y las bombas o ventiladores que suman energía al fluido. La forma general de esta, llamémosla, "forma energética de la ecuación de Bernoulli" es: la paja

donde: este es lo especificado

  • es el Peso específico ().
  • es una medida de la energía que se le suministra al fluido.
  • es una medida de la energía empleada en vencer las fuerzas de fricción a través del recorrido del fluido.
  • Los subíndices y indican si los valores están dados para el comienzo o el final del volumen de control respectivamente.

Suposiciones

La ecuación arriba escrita es un derivado de la primera ley de la termodinámica para flujos de fluido con las siguientes características .

  • El fluido de trabajo, es decir, aquél que fluye y que estamos considerando, tiene una densidad constante.
  • No existe cambio de energía interna.

Demostración

Escribamos la primera ley de la termodinámica con un criterio de signos termodinámico conveniente:

Recordando la definición de la entalpía , donde es la energía interna y se conoce como volumen específico . Podemos escribir:

que por la suposiciones declaradas más arriba se puede reescribir como:

dividamos todo entre el término de la aceleración de gravedad

rthtuiy5iohtirhuirtuir

Los términos del lado izquierdo de la igualdad son relativos a los flujos de energía a través del volumen de control considerado, es decir, son las entradas y salidas de energía del fluido de trabajo en formas de trabajo () y calor (). El término relativo al trabajo consideraremos que entra al sistema, lo llamaremos y tiene unidades de longitud, al igual que , que llamaremos quién sale del sistema, ya que consideraremos que sólo se intercambia calor por vía de la fricción entre el fluido de trabajo y las paredes del conducto que lo contiene. Así la ecuación nos queda:

o como la escribimos originalmente:

Así, podemos observar que el principio de bernoulli es una consecuencia directa de la primera ley de la termodinámica, o si se quiere, otra forma de esta ley. En la primera ecuación presentada en este artículo el volumen de control se había reducido a tan solo una linea de corriente sobre la cual no habían intercambios de energía con el resto del sistema, de aquí la suposición de que el fluido debería ser ideal, es decir, sin viscosidad ni fricción interna, ya que no existe un término entre las distintas lineas de corriente.

Aplicaciones Principio de Bernoulli

Chimenea
Las Chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayor es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.

Tubería
La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.

Sustentación de aviones
El efecto Bernoulli es también en parte el origen de la sustentación de los aviones. Gracias a la forma y orientación de los perfiles aerodinámicos, el ala es curva en su cara superior y esta angulada respecto a las líneas de corriente incidentes. Por ello, las líneas de corriente arriba del ala están mas juntas que abajo, por lo que la velocidad del aire es mayor y la presión es menor arriba del ala; al ser mayor la presión abajo del ala, se genera una fuerza neta hacia arriba llamada sustentación.

Movimiento de una pelota o balón con efecto Si lanzamos una pelota o un balón con efecto, es decir rotando sobre si mismo se desvía hacia un lado.

Carburador de automóvil
En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.

Véase también

  • Teorema de Torricelli.